Llama 3
AI训练模型

Llama 3

Meta最新开源推出的新一代大模型

,

Llama 3是什么

Llama 3是Meta公司最新开源推出的新一代大型语言模型(LLM),包含8B和70B两种参数规模的模型,标志着开源人工智能领域的又一重大进步。作为Llama系列的第三代产品,Llama 3不仅继承了前代模型的强大功能,还通过一系列创新和改进,提供了更高效、更可靠的Al解决方案,旨在通过先进的自然语言处理技术,支持广泛的应用场景,包括但不限于编程、问题解决、翻译和对话生成。Llama 3

Llama 3的系列型号

Llama 3目前提供了两种型号,分别为8B(80亿参数)和70B(700亿参数)的版本,这两种型号旨在满足不同层次的应用需求,为用户提供了灵活性和选择的自由度。

  • Llama-3-8B:8B参数模型,这是一个相对较小但高效的模型,拥有80亿个参数。专为需要快速推理和较少计算资源的应用场景设计,同时保持了较高的性能标准。
  • Llama-3-70B:70B参数模型,这是一个更大规模的模型,拥有700亿个参数。它能够处理更复杂的任务,提供更深入的语言理解和生成能力,适合对性能要求更高的应用。

后续,Llama 3还会推出400B 参数规模的模型,目前还在训练中。Meta 还表示等完成 Llama 3的训练,还将发布一份详细的研究论文。

Llama 3的官网入口

  • 官方项目主页:
    https://llama.meta.com/llama3/2
  • GitHub模型权重和代码:
    https://github.com/meta-llama/llama3/c
  • Hugging Face模型:
    https://huggingface.co/collections/meta-
    llama meta-llama-3-
    66214712577ca38149ebb2b6₫

Llama 3的改进地方

  • 参数规模:Llama 3提供了8B和70B两种参数规模的模型,相比Llama 2,参数数量的增加使得模型能够捕捉和学习更复杂的语言模式。
  • 训练数据集:Llama 3的训练数据集比Llama 2大了7倍,包含了超过15万亿个token,其中包括4倍的代码数据,这使得Llama 3在理解和生
    成代碍方面更加出色。
  • 模型架构:Llama 3采用了更高效的分词器和分组查询注意力(Grouped Query Attention,GQA)技术,提高了模型的推理效率和处理长文本的能力。
  • 性能提升:通过改进的预训练和后训练过程,Llama 3在减少错误拒绝率、提升响应对齐和增加模型响应多样性方面取得了进步。
  • 安全性:引入了Llama Guard 2等新的信任和安全工具,以及Code Shield和CyberSec Eval
    2,增强了模型的安全性和可靠性。
  • 多语言支持:Llama 3在预训练数据中加入了超过30种语言的高质量非英语数据,为未来的多语言能力打下了基础。
  • 推理和代码生成:Llama 3在推理、代码生成和指令跟随等方面展现了大幅提升的能力,使其在复杂任务处理上更加精准和高效。

Llama 3的性能评估

根据Meta的官方博客,经指令微调后的Llama 38B 模型在MMLU, GPQA, HumanEval, GSM-8K, MATHE数据集基准测试中都优于同等级参数规模的模型(Gemma 7B、Mistral 7B),而微週后的 Llama 370B在 MLLU、HumanEval、GSM-8K 等基准测试中也都优手同等規模的 Gemini Pro 1.5 和 Claude 3 Sonnet 模型。Llama 3

此外,Meta还开发了一套新的高质量人类评估集,包含1800个提示,涵盖12个关键用例:寻求建议、头脑风暴、分类、封闭式问答、编码、创意写作、提取、塑造角色/角色、开放式问答、推理、重写和总结。通过与Claude Sonnet、Mistral Medium和GPT-3.5等竞争模型的比较,人类评估者基于该评估集进行了偏好排名,结果显示Llama 3在真实世界场景中的性能非常出色,最低都有52.9%的胜出率。Llama 3

Llama 3的技术架构

  • 解码器架构:Llama 3采用了解码器(decoder-only)架构,这是一种标准的Transformer模型架构,主要用于处理自然语言生成任务。
  • 分词器和词汇量:Llama 3使用了具有128K个token的分词器,这使得模型能够更高效地编码语言,从而显著提升性能。
  • 分组查询注意力(Grouped QueryAttention, GQA):为了提高推理效率,Llama 3在8B和70B模型中都采用了GQA技术。这种技术通过将注意力机制中的查询分组,减少了计算量,同时保持了模型的性能。
  • 长序列处理:Llama 3支持长达8,192个token的序列,使用掩码(masking)技术确保自注意力(self-attention)不会跨越文档边界,这对于处理长文本尤其重要。
  • 预训练数据集:Llama 3在超过15TB的token上进行了预训练,这个数据集不仅规模巨大,而且质量高,为模型提供了丰富的语言信息。
  • 多语言数据:为了支持多语言能力,Llama 3的预训练数据集包含了超过5%的非英语高质量数据,涵盖了超过30种语言。
  • 数据过滤和质量控制:Llama 3的开发团队开发了一系列数据过滤管道,包括启发式过滤器、NSFW(不适合工作场所)过滤器、语义去重方法和文本分类器,以确保训练数据的高质量。
  • 扩展性和并行化:Llama 3的训练过程中采用了数据并行化、模型并行化和流水线并行化,这些技术的应用使得模型能够高效地在大量GPU上进行训练。
  • 指令微调 (Instruction Fine-Tuning):Llama 3在预训练模型的基础上,通过指令微调进一步提升了模型在特定任务上的表现,如对话和编程任务。

如何使用Llama 3

开发人员

Meta已在GitHub、Hugging Face、Replicate上开源其Llama 3模型,开发人员可使用torchtune等工具对Lama 3进行定制和微调,以适应特定的用例和需求,感兴趣的开发者可以查看官方的入门指南并前往下载部署。

  • 官方模型下载:https://|lama.meta.com/llama-
    downloadso
  • GitHubtttit: https://github.com/meta-
    lama/llama3/c
  • Hugging Face地址:
    https://huggingface.co/meta-llamac
  • Replicatettti: https://replicate.com/metac

普通用户

不懂技术的普通用户想要体验Llama 3可以通过以下方式使用:

  • 访问Meta最新推出的Meta AI聊天助手进行体验(注:Meta.AI会锁区,只有部分国家可使用)
  • 访问Replicate提供的Chat with Llama进行体验
    https://llama3.replicate.dev/c
  • 使用Hugging Chat
    (https://huggingface.co/chat/),可手动
    将模型切换至Llama 3

访问统计

相关GPTs

暂无评论

暂无评论...